Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Accidental discovery dramatically improves conductivity

This story is from the category Computing Power
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 15/11/2013

Quite by accident, Washington State University researchers have achieved a 400-fold increase in the electrical conductivity of a crystal simply by exposing it to light. The effect, which lasted for days after the light was turned off, could dramatically improve the performance of devices like computer chips.

WSU doctoral student Marianne Tarun chanced upon the discovery when she noticed that the conductivity of some strontium titanate shot up after it was left out one day. At first, she and her fellow researchers thought the sample was contaminated, but a series of experiments showed the effect was from light.

“It came by accident,” said Tarun. “It’s not something we expected. That makes it very exciting to share.”

The phenomenon they witnessed—“persistent photoconductivity”—is a far cry from superconductivity, the complete lack of electrical resistance pursued by other physicists, usually using temperatures near absolute zero. But the fact that they’ve achieved this at room temperature makes the phenomenon more immediately practical.

And while other researchers have created persistent photoconductivity in other materials, this is the most dramatic display of the phenomenon.
The research, which was funded by the National Science Foundation, appears this month in the journal Physical Review Letters.

“The discovery of this effect at room temperature opens up new possibilities for practical devices,” said Matthew McCluskey, co-author of the paper and chair of WSU’s physics department. “In standard computer memory, information is stored on the surface of a computer chip or hard drive. A device using persistent photoconductivity, however, could store information throughout the entire volume of a crystal.”

This approach, called holographic memory, “could lead to huge increases in information capacity,” McCluskey said.

Strontium titanate and other oxides, which contain oxygen and two or more other elements, often display a dizzying variety of electronic phenomena, from the high resistance used for insulation to superconductivity’s lack of resistance.

See the full Story via external site: news.wsu.edu



Most recent stories in this category (Computing Power):

19/02/2017: Printable solar cells just got a little closer

04/02/2017: 1,000x more efficient nano-LED offers possibility of faster processors

31/01/2017: For this metal, electricity flows, but not heat

26/01/2017: Google brings AI to Raspberry Pi

12/01/2017: Researchers turn memory chips into processors to speed up computing tasks

08/01/2017: Intel announces Compute Card – A full PC the size of a Credit Card

23/12/2016: Scalable energy harvesting of unused mechanical energy in the environment

28/11/2016: Japan kicks off AI supercomputer project