Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 'Knitted muscles' provide power: Normal fabric with electroactive coating adds 'muscle'

This story is from the category Embodiment
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 31/01/2017

Researchers have coated normal fabric with an electroactive material, and in this way given it the ability to actuate in the same way as muscle fibres. The technology opens new opportunities to design "textile muscles" that could, for example, be incorporated into clothes, making it easier for people with disabilities to move. The study, which has been carried out by researchers at Linköping University and the University of Borås in Sweden, has been published in Science Advances.

Developments in robot technology and prostheses have been rapid, due to technological breakthroughs. For example, devices known as "exoskeletons" that act as an external skeleton and muscles have been developed to reinforce a person's own mobility.

"Enormous and impressive advances have been made in the development of exoskeletons, which now enable people with disabilities to walk again. But the existing technology looks like rigid robotic suits. It is our dream to create exoskeletons that are similar to items of clothing, such as "running tights" that you can wear under your normal clothes. Such device could make it easier for older persons and those with impaired mobility to walk," says Edwin Jager, associate professor at Division of Sensor and Actuator Systems, Linköping University.

Current exoskeletons are driven by motors or pressurised air and develop power in this way. In the new study, the researchers have instead used the advantages provided by lightweight and flexible fabrics, and developed what can be described as "textile muscles". The researchers have used mass-producible fabric and coated it with an electroactive material. It is in this special coating that the force in the textile muscles arises. A low voltage applied to the fabric causes the electroactive material to change volume, causing the yarn or fibres to increase in length. The properties of the textile are controlled by its woven or knitted structure. Researchers can exploit this principle, depending on how the textile is to be used.

"If we weave the fabric, for example, we can design it to produce a high force. In this case, the extension of the fabric is the same as that of the individual threads. But what happens is that the force developed is much higher when the threads are connected in parallel in the weave. This is the same as in our muscles. Alternatively, we can use an extremely stretchable knitted structure in order to increase the effective extension," says Nils-Krister Persson, associate professor in the Smart Textiles Initiative at the Swedish School of Textiles, University of Borås.

See the full Story via external site: www.sciencedaily.com



Most recent stories in this category (Embodiment):

28/02/2017: UK robotics research gets £17.3m pledge

31/01/2017: 'Knitted muscles' provide power: Normal fabric with electroactive coating adds 'muscle'

23/12/2016: A drone that flies (almost) like a bird

21/11/2016: 100 Women 2016: The women challenging sexism in e-sports

10/04/2015: New Technology Making Drones Safer and Smarter

15/01/2015: People conform to the norm whether that norm is physical or virtual

20/08/2014: Research Paves Way for Development of Cyborg Moth Biobots

28/07/2014: Phase-changing material could allow even low-cost robots to switch between hard and soft states