Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Researchers discover brain's memory 'buffer' in single cells

This story is from the category The Brain
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 26/01/2009

Individual nerve cells in the front part of the brain can hold traces of memories on their own for as long as a minute and possibly longer, researchers at UT Southwestern Medical Center have found.

The study, available online and appearing in the February issue of Nature Neuroscience, is the first to identify the specific signal that establishes nonpermanent cellular memory and reveals how the brain holds temporary information. It has implications for addiction, attention disorders and stress-related memory loss, said Dr. Don Cooper, assistant professor of psychiatry at UT Southwestern and senior author of the study conducted in mice.

Researchers have known that permanent memories are stored when the excitatory amino acid glutamate activates ion channels on nerve cells in the brain to reorganize and strengthen the cells' connections with one another. But this process takes minutes to hours to turn on and off and is too slow to buffer, or temporarily hold, rapidly incoming information.

The researchers found that rapid-fire inputs less than a second long initiate a cellular memory process in single cells lasting as long as minute, a process called metabotropic glutamate transmission. This transmission in the most highly evolved brain region holds moment-to-moment information.

See the full Story via external site: www.physorg.com



Most recent stories in this category (The Brain):

04/02/2017: HKU scientists utilise innovative neuroimaging approach to unravel complex brain networks

26/01/2017: Personality linked to 'differences in brain structure'

12/01/2017: Donkey Kong used to Help Guide New Approaches in Neuroscience

10/12/2016: Doctors use deep-brain ultrasound therapy to treat tremors

17/02/2015: Hearing experts break sound barrier for children born without hearing nerve

17/02/2015: Smoking thins vital part of brain

05/02/2015: Intracranial Stimulation Proved Efficient in the Recovery of Learning and Memory in Rats

05/02/2015: Repeated head blows linked to smaller brain volume and slower processing speeds