Untitled Document
Not a member yet? Register for full benefits!

Physicists take first step towards super-fast search algorithms for quantum computers

This story is from the category Computing Power

Date posted: 09/07/2009

When you toss a coin, you either get heads or tails. By contrast, things are not so definite at the microcosmic level. An atomic 'coin' can display a superposition of heads and tails when it has been thrown. However, this only happens if you do not look at the coin. If you do, it decides in favour of one of the two states. If you leave the decision where a quantum particle should go to a coin like this, you get unusual effects. For the first time, physicists at the University of Bonn have demonstrated these effects in an experiment with caesium. Their research will be published in the next issue of the scientific journal Science.

Let's assume we carried out the following experiment: we put a coin in the hand of a test person. We'll simply call this person Hans. Hans's task is now to toss the coin several times. Whenever the coin turns up 'heads', his task is to take a step to the right. By contrast, if it turns up 'tails', he takes a step to the left. After 10 throws we look where Hans is standing. Probably he won't have moved too far from his initial position, as 'heads' and 'tails' turn up more or less equally often. In order to walk 10 paces to the right, Hans would have to get 10 'heads' successively. And that tends not happen that often.

Now, we assume that Hans is a very patient person. He is so patient that he does this experiment 1000 times successively. After each go, we record his position. When at the end we display this result as a graph, we get a typical bell curve. Hans very often ends up somewhere close to his starting positions after 10 throws. By contrast, we seldom find him far to the left or right.

The experiment is called a 'random walk'. The phenomenon can be found in many areas of modern science, e.g. as Brownian motion. In the world of quantum physics, there is an analogy with intriguing new properties, the 'quantum walk'. Up to now, this was a more or less a theoretical construct, but physicists at the University of Bonn have now actually carried out this kind of 'quantum walk'.

See the full Story via external site: www.physorg.com

Most recent stories in this category (Computing Power):