Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Could humans be infected by computer viruses?

This story is from the category Augmenting Organics
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 06/06/2010

A scientist at the University of Reading has become the first person in the world to be infected by a computer virus.

Dr Mark Gasson, from the School of Systems Engineering, contaminated a computer chip which had been inserted into his hand as part of research into human enhancement and the potential risks of implantable devices.

These results could have huge implications for implantable computing technologies used medically to improve health, such as heart pacemakers and cochlear implants, and as new applications are found to enhance healthy humans.

Dr Gasson says that as the technology behind these implants develops, they become more vulnerable to computer viruses.

"Our research shows that implantable technology has developed to the point where implants are capable of communicating, storing and manipulating data," he said. "They are essentially mini computers. This means that, like mainstream computers, they can be infected by viruses and the technology will need to keep pace with this so that implants, including medical devices, can be safely used in the future."

See the full Story via external site: www.physorg.com



Most recent stories in this category (Augmenting Organics):

03/03/2017: Adjustable Smart Desks join the Internet of Things

08/02/2017: More screen time for kids isn’t all that bad

24/01/2017: Australia plans automated biometric border control

12/01/2017: Lending a hand: Student 3D prints functional, affordable prosthetic

16/11/2016: Tiny electronic device can monitor heart, recognize speech

02/04/2015: Researchers Build Non-Invasive Brain-Machine Interface to Control Prosthetic Hand

05/02/2015: Researchers at Shanghai University create tri-layered artificial blood vessels for the first time

05/01/2015: Researchers explore the power of mental visualization in maintaining real-life muscle