Untitled Document
Not a member yet? Register for full benefits!

 Multistep Diagnostics on Paper

This story is from the category Health
Printer Friendly Version
Email to a Friend (currently Down)



Date posted: 14/07/2010

Paper-based diagnostic tests represent an exciting opportunity for improving medical testing in poor countries. They are cheap to produce and don't require complicated instruments to carry out a test or read the result, so they can be implemented in areas with few resources and little infrastructure. But paper diagnostic tests have thus far been limited to fairly simple reactions. Researchers at University of Washington in Seattle have now taken an important step toward enabling more complex chemical reactions on paper.

Paul Yager and collaborators have developed a way to control the timing of delivery of chemicals within a paper-based device, and demonstrated how this can be used to amplify the signal of a test antibody. The amplification step is an important part of routine technique called an enzyme-linked immonsorbent assay (ELISA) that is currently carried out on large, expensive instrumentation. "[ELISA is] the gold standard for sensitivity-- the gold standard for many diagnostics where you're detecting proteins, even small antibodies. It can be used to diagnose multiple diseases," says Barry Lutz, a coauthor on the studies, and Research Assistant Professor at the University of Washington.

Existing clinical tests, involving trained laboratory technicians and large, expensive equipment are out of reach of clinics in remote areas of the developing world. A microfluidic device capable of controlling the movement of tiny amounts of fluid could reduce the amount of costly reagents and enzymes for the tests, and using paper as a material reduces the cost even further.

Pregnancy tests sold in drugstores are a simple example of a paper-based diagnostics. Yager and others are now creating much more complex paper-based tests. Other scientists have had some success developing a paper test of liver function. But most clinical tests are more complex, requiring multiple steps to isolate, label, and multiply a molecule of interest.

See the full Story via external site: www.technologyreview.com

Most recent stories in this category (Health):

03/03/2017: Interactive health apps may inspire healthy behaviors, but watch the tone

31/01/2017: Surgical eye robot performs precision-injection in patient with retinal vein occlusion

31/01/2017: Assessment of comatose patients through telemedicine efforts shown to be reliable

12/01/2017: Wearable biosensors can flag illness, Lyme disease, risk for diabetes; low airplane oxygen

31/12/2016: Drone-based blood deliveries in Tanzania to be funded by UK

23/12/2016: Researchers combat antimicrobial resistance using smartphones

14/12/2016: Snapchat spectacles worn by UK surgeon while operating

01/06/2015: Staring Pain in the Face – Software Reads Kids’ Expressions to Measure Pain Levels