Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Relocating LEDs from Silicon to Copper Enhances Efficiency

This story is from the category Computing Power
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 18/06/2012

Chinese researchers have succeeded in transferring gallium nitride (GaN) light-emitting diodes (LEDs) grown on a layer of silicon to a layer of copper. The new copper substrate enabled the GaN crystals to release some of the internal stresses generated when they originally formed.

This relaxation helped minimize the so-called "quantum confined stark effect," a vexing problem for LEDs that reduces their efficiency. In comparison with LEDs on silicon substrates, the light output of LEDs on copper was enhanced by 122 percent.

The relocation of the LEDs produced no obvious deterioration in the crystals' light-emitting region, known as multiple quantum wells. The researchers attributed the improvements in efficiency to the removal of the absorptive substrate; the insertion of a metal reflector between the LEDs' structure and the copper submount; the elimination of electrode shading, which also reduces efficiency; and the rough surface of the exposed buffer layer, which improves crystal orientation on the substrate.

The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.

See the full Story via external site: www.sciencedaily.com



Most recent stories in this category (Computing Power):

19/02/2017: Printable solar cells just got a little closer

04/02/2017: 1,000x more efficient nano-LED offers possibility of faster processors

31/01/2017: For this metal, electricity flows, but not heat

26/01/2017: Google brings AI to Raspberry Pi

12/01/2017: Researchers turn memory chips into processors to speed up computing tasks

08/01/2017: Intel announces Compute Card – A full PC the size of a Credit Card

23/12/2016: Scalable energy harvesting of unused mechanical energy in the environment

28/11/2016: Japan kicks off AI supercomputer project