Untitled Document
Not a member yet? Register for full benefits!

 A Whisker-Inspired Approach to Tactile Sensing

This story is from the category Sensors
Printer Friendly Version
Email to a Friend (currently Down)



Date posted: 07/09/2012

Inspired by the twitching whiskers of common rats and Etruscan shrews, EU-funded researchers have developed rodent-like robots and an innovative tactile sensor system that could be used to help find people in burning buildings, make vacuum cleaners more efficient and eventually improve keyhole surgery.

Sensor systems that replicate the sense of touch have been the focus of increasing research in recent years, largely for robotics applications. But the focus has normally been on developing sensors that in some way or another replicate the way humans touch and sense the world: with our skin and particularly our fingertips.

'The main reason people explored fingertip-like sensors is because we have fingertips, but any kind of tactile sensor has to interact with objects and surfaces -- and fingertips have a big problem with wear and tear,' explains Tony Prescott, a professor of Cognitive Neuroscience at the University of Sheffield in the United Kingdom.

Nature, however, has devised a much more robust, and often much more sensitive, kind of tactile sensing device: whiskers.

'If you look at the natural world, almost all mammals except humans have whiskers -- it's actually us that have lost them. Whiskers are a natural way to sense things with touch,' Prof. Prescott says.

And, it turns out, just like their biological counterparts, artificial whiskers offer some big advantages over other approaches to tactile sensing as Prof. Prescott and a team of researchers from seven countries have proved in the Biotact (1) project. Supported by EUR 5.4 million in research funding from the European Commission, the researchers studied rats and mice, tiny Etruscan shrews and other mammals and attempted to replicate the way they use their whiskers, or 'vibrissae', to sense their environment, detect objects and follow prey.

Their work has led to the development of an active vibrissal tactile sensor array and a series of rat-like robots that can move around by touch alone. The technology could potentially be used commercially for applications as diverse as search and rescue, consumer appliances, product testing or medicine.

'To begin with we had to understand how mammals use their whiskers. Around one third of the project was therefore dedicated to behavioural neuroscience, including filming rats and shrews using high-speed cameras to see how they use their whiskers whilst monitoring patterns of neural activity,' Prof. Prescott, the Biotact project coordinator, explains.

See the full Story via external site: www.sciencedaily.com

Most recent stories in this category (Sensors):

28/02/2017: DJI drones use plane avoidance tech

19/02/2017: Ford developing pothole alert system for drivers

08/02/2017: Pioneering chip extends sensors’ battery life

04/02/2017: Sensor Networks for Rangeland Animals

04/02/2017: Cardiff Uni bid to create osteoarthritis 'smart patch'

31/01/2017: Efficient time synchronization of sensor networks by means of time series analysis

12/01/2017: Uber to share data to help ease city congestion

23/12/2016: Electronic 'hairy skin' could give robots a more human sense of touch