Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Raising the IQ of Smart Windows

This story is from the category Display Technology
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 15/08/2013

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a new material to make smart windows even smarter. The material is a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates.

“In the US, we spend about a quarter of our total energy on lighting, heating and cooling our buildings,” says Delia Milliron, a chemist at Berkeley Lab’s Molecular Foundry who led this research. “When used as a window coating, our new material can have a major impact on building energy efficiency.”

Milliron is corresponding author on a paper describing the results the journal Nature. The paper is titled, “Tunable near-infrared and visible light transmittance in nanocrystal-in-glass composites,” co-authored by Anna Llordés, Guillermo Garcia, and Jaume Gazquez.

Milliron’s research group is already well known for their smart-window technology that blocks NIR without blocking visible light. The technology hinges on an electrochromic effect, where a small jolt of electricity switches the material between NIR-transmitting and NIR-blocking states. This new work takes their approach to the next level by providing independent control over both visible and NIR light. The innovation was recently recognized with a 2013 R&D 100 Award and the researchers are in the early stages of commercializing their technology.

Independent control over NIR light means that occupants can have natural lighting indoors without unwanted thermal gain, reducing the need for both air-conditioning and artificial lighting. The same window can also be switched to a dark mode, blocking both light and heat, or to a bright, fully transparent mode.

See the full Story via external site: newscenter.lbl.gov



Most recent stories in this category (Display Technology):

08/02/2017: New method improves accuracy of imaging systems

04/02/2017: New technology to watch the sea waves in 3D

11/01/2017: Telepresence used for Criminal Court Proceedings

16/09/2014: ‘Squid skin’ metamaterials project yields vivid color display

10/09/2014: 2D or 3D? New study shows no difference in emotional reactions between film formats

28/08/2014: Razor-sharp TV pictures

07/06/2014: Shatterproof screens that save smartphones

27/05/2014: New 'T-ray' tech converts light to sound for weapons detection, medical imaging