Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 MRI to offer advances in treatment for chronic kidney disease

This story is from the category Health
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 12/02/2014

Detailed structural and functional ‘maps’ of the human kidney made using advanced scanning technology are to be developed by scientists at The University of Nottingham.

The research, funded with £107,623 from the Dr Hadwen Trust, a non-animal biomedical research charity, aims to further our understanding of how the kidneys function, ultimately leading to better monitoring and treatment for chronic kidney disease.

It will be the first of its kind to use magnetic resonance imaging to investigate the role which oxygen plays in keeping the human kidney healthy.

The study is being led by Dr Sue Francis in the University’s Sir Peter Mansfield Magnetic Resonance Centre in collaboration with Professor Chris McIntyre in the University’s School of Medicine.

Dr Francis said: “Current tests for chronic kidney disease can be very invasive and patients may need to return to the hospital on a number of occasions.

“The aim of this project is to produce a set of non-invasive measurements that we can produce in a single, one-hour scanning session that can assess the blood flow and oxygenation of the kidney and which could eventually be rolled out in a clinical setting to benefit patients.”

Dr Francis added: “Current methods can only offer a fairly crude picture of what is happening in the kidneys and how that is changing over time. For example, if one kidney is doing most of the work it can be difficult to tell and taking just a small sample of tissue from one area of the kidney may not be representative of the organ as a whole.”

The research will instead use magnetic resonance imaging (MRI), powered by a 3 Tesla magnet, to scan the kidney and build up a detailed picture of perfusion in the kidney — the way in which blood is delivered to and flows through the organ. It will also measure the metabolic rate of oxygen — how oxygen is consumed within the kidney — which has not been done before using MR imaging.

The research will develop novel MRI techniques, and use these techniques in healthy volunteers to study the kidney’s response to oxygen and CO2 changes to assess how the kidney behaves under stress which mimics diseased kidneys.

See the full Story via external site: www.nottingham.ac.uk



Most recent stories in this category (Health):

03/03/2017: Interactive health apps may inspire healthy behaviors, but watch the tone

31/01/2017: Surgical eye robot performs precision-injection in patient with retinal vein occlusion

31/01/2017: Assessment of comatose patients through telemedicine efforts shown to be reliable

12/01/2017: Wearable biosensors can flag illness, Lyme disease, risk for diabetes; low airplane oxygen

31/12/2016: Drone-based blood deliveries in Tanzania to be funded by UK

23/12/2016: Researchers combat antimicrobial resistance using smartphones

14/12/2016: Snapchat spectacles worn by UK surgeon while operating

01/06/2015: Staring Pain in the Face – Software Reads Kids’ Expressions to Measure Pain Levels