Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Researchers Make Important Step Towards Creating Medical Nanorobots

This story is from the category Health
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 20/08/2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

Details of their research project are given in the journal Nature Nanotechnology.It is the first experimental publication by an exclusively Russian team in one of the most cited scientific magazines in many years.

The paper draws on the idea of computing using biomolecules. In electronic circuits, for instance, logical connectives use current or voltage (if there is voltage, the result is 1, if there is none, it’s 0).In biochemical systems, the result can a given substance.

For example, modern bioengineering techniques allow for making a cell illuminate with different colors or even programming it to die, linking the initiation of apoptosis to the result of binary operations.

Many scientists believe logical operations inside cells or in artificial biomolecular systems to be a way of controlling biological processes and creating full-fledged micro-and nano-robots, which can, for example, deliver drugs on schedule to those tissues where they are needed.

Calculations using biomolecules inside cells, a.k.a. biocomputing, are a very promising and rapidly developing branch of science, according to the leading author of the study, Maxim Nikitin, a 2010 graduate of MIPT’s Department of Biological and Medical Physics. Biocomputing uses natural cellular mechanisms. It is far more difficult, however, to do calculations outside cells, where there are no natural structures that could help carry out calculations. The new study focuses specifically on extracellular biocomputing.

The study paves the way for a number of biomedical technologies and differs significantly from previous works in biocomputing, which focus on both the outside and inside of cells. Scientists from across the globe have been researching binary operations in DNA, RNA and proteins for over a decade now, but Maxim Nikitin and his colleagues were the first to propose and experimentally confirm a method to transform almost any type of nanoparticle or microparticle into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target (such as a cell) as result of a computation. This method allows for selective binding to target cells, as well as it represents a new platform to analyze blood and other biological materials.

The prefix “nano” in this case is not a fad or a mere formality. A decrease in particle size sometimes leads to drastic changes in the physical and chemical properties of a substance. The smaller the size, the greater the reactivity; very small semiconductor particles, for example, may produce fluorescent light. The new research project used nanoparticles (i.e. particles of 100 nm) and microparticles (3000 nm or 3 micrometers).

See the full Story via external site: mipt.ru



Most recent stories in this category (Health):

03/03/2017: Interactive health apps may inspire healthy behaviors, but watch the tone

31/01/2017: Surgical eye robot performs precision-injection in patient with retinal vein occlusion

31/01/2017: Assessment of comatose patients through telemedicine efforts shown to be reliable

12/01/2017: Wearable biosensors can flag illness, Lyme disease, risk for diabetes; low airplane oxygen

31/12/2016: Drone-based blood deliveries in Tanzania to be funded by UK

23/12/2016: Researchers combat antimicrobial resistance using smartphones

14/12/2016: Snapchat spectacles worn by UK surgeon while operating

01/06/2015: Staring Pain in the Face – Software Reads Kids’ Expressions to Measure Pain Levels