Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Flexing the Brain: Carnegie Mellon, Pitt Scientists Discover Why Learning Tasks Can Be Difficult

This story is from the category The Brain
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 28/08/2014

Learning a new skill is easier when it is related to an ability we already have. For example, a trained pianist can learn a new melody easier than learning how to hit a tennis serve.

Scientists from the Center for the Neural Basis of Cognition (CNBC) a joint program between Carnegie Mellon University and the University of Pittsburgh have discovered a fundamental constraint in the brain that may explain why this happens. Published as the cover story in the Aug. 28, 2014, issue of Nature, they found for the first time that there are limitations on how adaptable the brain is during learning and that these restrictions are a key determinant for whether a new skill will be easy or difficult to learn. Understanding the ways in which the brain's activity can be "flexed" during learning could eventually be used to develop better treatments for stroke and other brain injuries.

Lead author Patrick T. Sadtler, a Ph.D. candidate in Pitt's Department of Bioengineering, compared the study's findings to cooking.

"Suppose you have flour, sugar, baking soda, eggs, salt and milk. You can combine them to make different items - bread, pancakes and cookies but it would be difficult to make hamburger patties with the existing ingredients," Sadtler said. "We found that the brain works in a similar way during learning. We found that subjects were able to more readily recombine familiar activity patterns in new ways relative to creating entirely novel patterns."

For the study, the research team trained animals to use a brain-computer interface (BCI), similar to ones that have shown recent promise in clinical trials for assisting quadriplegics and amputees.

"This evolving technology is a powerful tool for brain research," said Daofen Chen, program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), which supported this research. "It helps scientists study the dynamics of brain circuits that may explain the neural basis of learning."

See the full Story via external site: www.cmu.edu



Most recent stories in this category (The Brain):

04/02/2017: HKU scientists utilise innovative neuroimaging approach to unravel complex brain networks

26/01/2017: Personality linked to 'differences in brain structure'

12/01/2017: Donkey Kong used to Help Guide New Approaches in Neuroscience

10/12/2016: Doctors use deep-brain ultrasound therapy to treat tremors

17/02/2015: Hearing experts break sound barrier for children born without hearing nerve

17/02/2015: Smoking thins vital part of brain

05/02/2015: Intracranial Stimulation Proved Efficient in the Recovery of Learning and Memory in Rats

05/02/2015: Repeated head blows linked to smaller brain volume and slower processing speeds