Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Professor Finally Publishes Controversial Brain Theory

This story is from the category The Brain
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 20/11/2008

In the late '90s, Asim Roy, a professor of information systems at Arizona State University, began to write a paper on a new brain theory. Now, 10 years later and after several rejections and resubmissions, the paper ?Connectionism, Controllers, and a Brain Theory? has finally been published in the November issue of IEEE Transactions on Systems, Man, and Cybernetics ? Part A: Systems and Humans.

In his paper, Roy argues for a controller theory of the brain. In this view, there are some parts of the brain that control other parts, making it a hierarchical system. In the controller theory, which fits with the so-called computational theory, the brain learns lots of rules and uses them in a top-down processing method to operate. In 1997, IBM?s Deep Blue computer, which famously defeated world chess champion Garry Kasparov, operated based on countless rules entered by its programmers.

Despite the success of the rule-based AI system in chess, no AI system has come close to learning and interacting with the world at the human level, using either the connectionist approach or the computational approach. Although the human brain may not serve as the best model for AI systems, a human-like machine should, by its very nature, be patterned after the human brain.

In his paper, Roy shows that the connectionist theory actually is controller-based, using a logical argument and neurological evidence. He explains that some of the simplest connectionist systems use controllers to execute operations, and, since more complex connectionist systems are based on simpler ones, these too use controllers. If Roy?s logic correctly describes how the brain functions, it could help AI researchers overcome some inherent limitations in connectionist algorithms.

?Connectionism can never create autonomous learning machines, and that?s where its flaw is,? Roy told PhysOrg.com. ?Connectionism requires human babysitting of their learning algorithms, and that?s not very brain-like. We don?t guide and control the learning inside our head. Wish we could tweak our brain from outside, but we can?t.?

In his argument, Roy uses examples of a human using a TV remote control or driving a car to demonstrate a general controller-based system. In these systems, the human is the controller, whether changing the TV channels or accelerating the vehicle, while the TV and car are the subservient systems.

In response, connectionists have argued that such systems are not controller-based, but connectionist ? or, more specifically, that these are feedback systems, where the components are codependent on each other. In the examples, the TV screen displays the show on that channel, which the human sees and decides whether or not to change the channel again. Or, the car?s speedometer registers 25 mph, which the driver sees and decides whether to accelerate or slow down. This feedback is essential for the human to act, connectionists argue, making the notion of a single controller in the system meaningless.

However, Roy?s response is that the controller doesn?t necessarily need feedback to control the TV or car. The human can act completely arbitrarily without feedback, such as by closing his eyes, and still continuing to change channels and press the accelerator. The key, Roy emphasizes, is that the controller has the ability to act in an arbitrary mode.

See the full Story via external site: www.physorg.com



Most recent stories in this category (The Brain):

04/02/2017: HKU scientists utilise innovative neuroimaging approach to unravel complex brain networks

26/01/2017: Personality linked to 'differences in brain structure'

12/01/2017: Donkey Kong used to Help Guide New Approaches in Neuroscience

10/12/2016: Doctors use deep-brain ultrasound therapy to treat tremors

17/02/2015: Hearing experts break sound barrier for children born without hearing nerve

17/02/2015: Smoking thins vital part of brain

05/02/2015: Intracranial Stimulation Proved Efficient in the Recovery of Learning and Memory in Rats

05/02/2015: Repeated head blows linked to smaller brain volume and slower processing speeds