Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Dry printing of nanotube patterns to any surface could revolutionize microelectronics

This story is from the category Computing Power
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 23/01/2010

Watch a gecko walk up a wall. It defies gravity as it sticks to the surface no matter how smooth it appears to be.

What's happening isn't magic. The gecko stays put because of the electrical attraction - the van der Waals force - between millions of microscopic hairs on its feet and the surface.

The principle applies to new research at Rice University reported this week in the online version of the journal ACS Nano. But in this case, the hairs figuratively come off the gecko and plant themselves on the wall.

Rice graduate student Cary Pint has come up with a way to transfer patterns of strongly aligned, single-walled carbon nanotubes (SWNTs) from a substrate to another surface - any surface - in a matter of minutes. The same substrate, with its catalyst particles still intact, can repeatedly be used to grow more nanotubes, almost like inking a rubber stamp.

Pint is primary author of the research paper, which also details a way to quickly and easily determine the range of diameters in a batch of nanotubes grown through chemical vapor deposition (CVD). Common spectroscopic techniques are poor at seeing tubes bigger than two nanometers in diameter - or most of the nanotubes in the CVD "supergrowth" process.

"This is important since all of the properties of the nanotubes - electrical, thermal and mechanical - change with diameter," he said. ?The best thing is that nearly every university has an FTIR (Fourier transform infrared) spectrometer sitting around that can do these measurements, and that should make the process of synthesis and application development from carbon nanotubes much more precise."

Pint and other students and colleagues of Robert Hauge, a Rice distinguished faculty fellow in chemistry, are also investigating ways to take printed films of SWNTs and make them all-conducting or all-semiconducting - a process Hauge refers to as "Fermi-level engineering" for its ability to manipulate electron movement at the nanoscale.

Combined, the techniques represent a huge step toward a nearly limitless number of practical applications that include sensors, highly efficient solar panels and electronic components.

"A big frontier for the field of nanoscience is in finding ways to make what we can do on the nanoscale impact our everyday activities," Hauge said. "For the use of carbon nanotubes in devices that can change the way we do things, a straightforward and scalable way of patterning aligned carbon nanotubes over any surface and in any pattern is a major advance"

See the full Story via external site: www.physorg.com



Most recent stories in this category (Computing Power):

19/02/2017: Printable solar cells just got a little closer

04/02/2017: 1,000x more efficient nano-LED offers possibility of faster processors

31/01/2017: For this metal, electricity flows, but not heat

26/01/2017: Google brings AI to Raspberry Pi

12/01/2017: Researchers turn memory chips into processors to speed up computing tasks

08/01/2017: Intel announces Compute Card – A full PC the size of a Credit Card

23/12/2016: Scalable energy harvesting of unused mechanical energy in the environment

28/11/2016: Japan kicks off AI supercomputer project