Untitled Document
Not a member yet? Register for full benefits!

 'Cinderella' - biaxial liquid crystal - is found at last

This story is from the category Display Technology
Printer Friendly Version
Email to a Friend (currently Down)



Date posted: 13/02/2010

Recent research at the DUBBLE beamline has proved the existence of liquid crystals with two main axes. Liquid crystals with a single main axis are already used in LCDs (liquid crystal displays), but crystals with two main axes can make computer monitors and optical switches much faster, as well as opening doors to new 3D technologies.

For decades, researchers have been on a quest for the 'Cinderella' of liquid crystals, a so-called biaxial liquid crystal. Some years ago, the formation of such liquid crystals with two main axes by complex banana-shaped molecules was reported. However, these results were contested, as some researchers believed that the observations might have originated from the complex internal structure of the crystals, which are not necessarily biaxial.

Researchers from Utrecht University, The Netherlands, have now proved the existence of biaxial liquid crystals in a much simpler system of inorganic colloidal particles, which are able to spontaneously form biaxial liquid crystals. The proof was obtained using DUBBLE, a facility which allows Dutch and Flemish researchers to experiment using X-rays at the ESRF (European Synchrotron Radiation Facility) in Grenoble, France.

See the full Story via external site: www.physorg.com

Most recent stories in this category (Display Technology):

08/02/2017: New method improves accuracy of imaging systems

04/02/2017: New technology to watch the sea waves in 3D

11/01/2017: Telepresence used for Criminal Court Proceedings

16/09/2014: ‘Squid skin’ metamaterials project yields vivid color display

10/09/2014: 2D or 3D? New study shows no difference in emotional reactions between film formats

28/08/2014: Razor-sharp TV pictures

07/06/2014: Shatterproof screens that save smartphones

27/05/2014: New 'T-ray' tech converts light to sound for weapons detection, medical imaging