Untitled Document
Not a member yet? Register for full benefits!

 Imaging inflammation in the living brain

This story is from the category Display Technology
Printer Friendly Version
Email to a Friend (currently Down)



Date posted: 30/09/2011

Inflammation occurs in the human brain during illnesses such as Alzheimer's disease, Parkinson’s disease, stroke and traumatic brain injury. Now, a research team in Japan has developed a probe that can bind to the pro-inflammatory enzyme cyclooxygenase (COX). The probe, 11C-ketoprofen methyl ester, enables researchers to observe when and where the enzyme is acting in the brains of living animals using positron emission tomography (PET) imaging.

In PET imaging, a radioactive tracer that binds specifically to a specific molecule in the body is injected into a living organism. Images are then taken with a PET scanner, indicating where in the body that tracer is found.

Led by Hirotaka Onoe at the RIKEN Center for Molecular Imaging Science in Kobe, the researchers had previously discovered that 11C-ketoprofen methyl ester could recognize COX, but not which of its two forms. To determine which isoform is responsible for binding their molecular probe, Miho Shukuri, a young member of Onoe’s team, utilized a series of mice lacking the genes for either COX-1 or COX-2. She found that the PET probe could bind to the brains of COX-2-deficient mice, but not to those lacking COX-1. According to the researchers, 11C-ketoprofen methyl ester is therefore the first PET probe that is specific to COX-1 in living animals.

When Shukuri injected bacterial antigens into the brain of rats to induce inflammation, she saw the PET probe build up in the brain within six hours to one day after antigen injection. The levels dropped a week later. Because COX-1 is rapidly activated by brain injury, this may mean that administration of drugs that block COX-1 soon after injury could prevent the progression of brain damage. “COX-1 could therefore be a promising target for the neurodegenerative diseases that exhibit neuro-inflammation,” explains Onoe.

See the full Story via external site: www.physorg.com

Most recent stories in this category (Display Technology):

08/02/2017: New method improves accuracy of imaging systems

04/02/2017: New technology to watch the sea waves in 3D

11/01/2017: Telepresence used for Criminal Court Proceedings

16/09/2014: Squid skin metamaterials project yields vivid color display

10/09/2014: 2D or 3D? New study shows no difference in emotional reactions between film formats

28/08/2014: Razor-sharp TV pictures

07/06/2014: Shatterproof screens that save smartphones

27/05/2014: New 'T-ray' tech converts light to sound for weapons detection, medical imaging