Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/virtualw/public_html/Archive/IndividualNews.php on line 12
VWN News: Springing Ahead of Nature: Device Increases Walking Efficiency
Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Springing Ahead of Nature: Device Increases Walking Efficiency

This story is from the category Sensors
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 01/04/2015

It’s taken millions of years for humans to perfect the art of walking. But research results published today in the journal Nature show that humans can get better “gas mileage” using an unpowered exoskeleton to modify the structure of their ankles. The device puts an extra spring in each human step, reducing metabolic energy consumption by 7 percent below walking in normal athletic shoes.

The finding may benefit both able-bodied people who are frequently on their feet – think of the military infantry or athletic baby-boomers, for example – as well as those who have been victims of stroke or other gait impairments.

To gain an advantage over nature, North Carolina State University and Carnegie Mellon University researchers tested the efficacy of a lightweight lower-leg device that uses a spring and clutch system working in tandem with calf muscles and the Achilles’ tendon while people walk. The streamlined, carbon-fiber device weighs about as much as a normal loafer – around 500 grams, or a bit more than a pound – and is not motorized, so it requires no energy from batteries or other external fuel sources.

“The unpowered exoskeleton is like a catapult. It has a spring that mimics the action of your Achilles’ tendon, and works in parallel with your calf muscles to reduce the load placed upon them,” said Dr. Gregory Sawicki, a biomedical engineer and locomotion physiologist in the joint NC State/University of North Carolina-Chapel Hill Department of Biomedical Engineering who co-authored the paper. “The clutch is essential to engage the spring only while the foot is on the ground, allowing it to store and then release elastic energy. Later it automatically disengages to allow free motion while the foot is in the air.”

See the full Story via external site: news.ncsu.edu



Most recent stories in this category (Sensors):

28/02/2017: DJI drones use plane avoidance tech

19/02/2017: Ford developing pothole alert system for drivers

08/02/2017: Pioneering chip extends sensors’ battery life

04/02/2017: Sensor Networks for Rangeland Animals

04/02/2017: Cardiff Uni bid to create osteoarthritis 'smart patch'

31/01/2017: Efficient time synchronization of sensor networks by means of time series analysis

12/01/2017: Uber to share data to help ease city congestion

23/12/2016: Electronic 'hairy skin' could give robots a more human sense of touch