Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Brain tumour treatment hope

This story is from the category The Brain
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 20/10/2011

Australian scientists have played a key role in the identification of a new biochemical mechanism that allows brain tumours to survive and grow, offering hope of new drug treatments for some of the most aggressive tumours.

The discovery offers new therapeutic perspectives and gives hope for the treatment of gliomas, the most common and aggressive type of brain tumour in both adults and children. Gliomas progress rapidly and the median survival time of patients is less than a year.

The research – by an international team from Germany, USA, Switzerland and Australia, led by Professor Michael Platten from the Department of Neurooncology at the University Hospital of Heidelberg – was recently published in the prestigious journal Nature.

In the study, the international team – including University of New South Wales researcher Associate Professor Gilles Guillemin – identified the key role played by kynurenine, a by-product of the metabolism of the essential amino acid tryptophan, in favouring brain tumour growth and at the same time suppressing anti-tumour immune response.

The researchers were also able to identify the receptor expressed by tumour cells that kynurenine acts through – the aryl hydrocarbon receptor (AhR).

While particularly relevant in the development and persistence of gliomas, the kynurenine pathway also has a role in other brain cancers, and is implicated in other neurodegenerative diseases. Associate Professor Guillemin said the breakthrough could potentially lead to viable therapeutics for a range of conditions, including Alzheimer’s disease, motor neuron diseases, multiple sclerosis and Parkinson’s disease.

“We are currently looking at all the molecules deriving from the tryptophan metabolism through the kynurenine pathway that can be linked to tumour persistence and immune suppression,” said Associate Professor Guillemin, who is head of the Neuroinflammation Group in UNSW’s School of Medical Sciences.

See the full Story via external site: medicalxpress.com



Most recent stories in this category (The Brain):

04/02/2017: HKU scientists utilise innovative neuroimaging approach to unravel complex brain networks

26/01/2017: Personality linked to 'differences in brain structure'

12/01/2017: Donkey Kong used to Help Guide New Approaches in Neuroscience

10/12/2016: Doctors use deep-brain ultrasound therapy to treat tremors

17/02/2015: Hearing experts break sound barrier for children born without hearing nerve

17/02/2015: Smoking thins vital part of brain

05/02/2015: Intracranial Stimulation Proved Efficient in the Recovery of Learning and Memory in Rats

05/02/2015: Repeated head blows linked to smaller brain volume and slower processing speeds